EXPANSION JOINT DESIGN GUIDE

2323 W. HUBBARD ST. • CHICAGO, IL 60612 • 312-738-3800 • FAX 312-738-0415 • http://www.metraflex.com

Table Of Contents

The data on some of the expansion joints from Metraflex are presented first in this guide. For information on expansion joints not described, please contact the factory.

Metraflex Expansion Joint Data

Model Metragator.	 	 	 		page 2, 3
Compensators	 	 	 		. page 4
Bellows Connector.	 	 	 		. page 5
Model MNLC	 	 	 		page 6, 7
Model MN	 	 	 		page 8, 9
Model MC	 	 	 	page	10, 11, 12
Metraloop	 	 	 		page 13

Bellows Designs

Bellow Expansion Joint Styles	page 14, 18	5
Internal Liners	page 10	5

Bellows Applications

Axial Bellows Application Procedure	page 17
Establishing Position of Guides	page 17-18
Calculating Forces Acting on Anchors	page 19, 20, 21
Complex Axial Installation Example	page 22, 23, 24, 25

Engineering Data

Thermal Expansion of Pipe in Inches	page 26
A Guide to Bellows Material Selection.	page 27
Installation Instructions	page 28

Terms and Conditions

How to Order Metraflex Metal Expansion Joints

Certain basic information about the pipeline system is required in order to select and order expansion joints. Data required about the system includes:

- 1. Maximum Working Pressure
- 2. Working Temperature
- 3. Axial, Lateral or Angular Movement
- 4. Cycles Required
- 5. Pipe Size
- 6. End Fittings Flange, Weld, Groove or Combination
- 7. Bellows Material
- 8. Velocities
- 9. Accessories Liners, Covers, Tie Rods

Metal Bellows expansion joints offer a cost effective alternative to other expansion devices while optimizing the productive life of a piping system.

Our expansion joints are designed to last as long as the system. They are maintenance-free. Sealing problems and large space requirements of other expansion devices are eliminated with bellows expansion joints.

All units meet the Standards of the Expansion Joint Manufacturers Association (EJMA) and military specification MIL-E-17813. Consult factory for specific type and class.

Metraflex has been supplying industry with quality piping products for over 40 years. Our reputation for superior products and technical support sets us apart from our competition.

In addition to non-metallic expansion joints, **Metraflex** is a supplier of metallic expansion joints, braided hose, expansion loops, pulsation dampeners, and other specialty piping products using bellows technologies. For more information or to order,

Contact us at:

www.metraflex.com

or contact the representative in your area - see back cover.

MODEL METRAGATOR EXPANSION JOINTS

EXTERNALLY PRESSURIZED

The **Metragator** solves the problem of long axial travel for expansion joints. It comes standard for movements of 4", 6" and 8". They are available in 150 and 300 psi models, and can be configured as doubles if required.

Maximum Working Pressure 150 or 300 ps
Working Temperature
Test Pressure
Bellows 2-Ply T304 S/S

FLANGED END

WELD END

	COM- PRES-	150PSI CLASS				300 PSI CLASS			
SIZE		FLANGED		WELD) END	FLAN	FLANGED		WELD END
	SION	OAL (in)	WT (lbs)	OAL (in)	WT (lbs)	OAL (in)	WT (lbs)	OAL (in)	WT (lbs)
	4"	24-7/8	34	24-1/4	26	25-3/4	49	23-1/4	35
2"	6"	31-5/8	41	31	33	34-3/4	63	32	48
	8"	38-3/8	50	37-3/4	42	41-3/4	72	39-1/4	58
	4"	25-1/8	40	24-1/2	29	25-3/4	56	23-1/4	36
2-1/2"	6"	31-7/8	48	31-1/4	37	34-3/4	73	32	52
	8"	38-5/8	58	38	47	41-3/4	84	39-1/4	63
	4"	23-7/8	51	23-1/4	38	24-3/4	75	22-1/4	47
3"	6"	30-1/8	60	29-1/2	47	31-1/4	87	28-1/2	59
	8"	38-3/8	75	37-3/4	62	39-3/4	106	37-1/4	78
4"	4"	23-7/8	75	24-1/4	59	25-3/4	121	22-3/4	74
	6"	31-3/8	89	30-3/4	73	32-1/2	141	29-1/2	94
	8"	37-7/8	110	37-1/4	94	41-1/4	170	38-1/2	124
5"	4"	25	112	24-1/4	91	24-1/2	158	21-1/2	97
	6"	31-1/2	133	30-3/4	112	30-3/4	181	27-1/2	120
	8"	38-1/4	165	37-1/2	144	36-3/4	203	33-3/4	143
	4"	25-1/2	138	24-3/4	115	25-1/4	190	21-1/2	106
6"	6"	32-1/4	162	31-1/2	139	31-1/4	214	27-1/2	130
	8"	38-1/2	200	37-3/4	177	37-1/2	239	33-3/4	155
	4"	28-1/4	198	27-1/4	153	26-3/4	295	22-1/2	168
8"	6"	34-3/4	230	33-3/4	185	33-1/2	336	29	209
	8"	42	283	41	238	40	377	35-3/4	250
	4"	27	240	26	186	28-1/2	396	23-3/4	216
10"	6"	34	281	33	227	35-3/4	452	30-3/4	272
	8"	40-1/4	342	39-1/4	288	44-3/4	534	40	354
	4"	27	308	26	226	30-1/2	540	25	285
12"	6"	33-1/4	355	32-1/4	273	38-1/4	610	32-1/2	355
	8"	39-3/4	428	38-3/4	346	47-3/4	712	42-1/4	457
	4"	28-1/4	491	24-1/2	293	30-3/4	732	25	373
14"	6"	36	565	32	367	38-1/2	828	32-1/2	468
	8"	45-1/2	671	41-3/4	473	48	966	42-1/4	607
	4"	28-3/4	547	24-1/2	329	31-1/2	798	25	418
16"	6"	36-1/4	631	32	412	39-1/4	905	32-1/2	525
	8"	46	749	41-3/4	530	48-3/4	1060	42-1/4	680

SIZE	BELLOWS AR (Inches S	EFFECTIVE E A Squared)	BELLOWS SPRING CONSTANT (Lbs/Inch/Corrugation)						
	150#	300#	1	50# CLAS	CLASS 3		00# CLASS		
	CLASS CLASS		4"	6"	8"	4"	6"	8"	
2"	13	12	183	115	92	388	260	194	
2-1/2"	13	12	183	115	92	388	260	194	
3"	21	16	343	235	172	504	380	252	
4"	36	30	200	143	103	850	566	424	
5"	47	42	235	166	120	1002	668	501	
6"	59	53	269	189	138	1140	760	570	
8"	89	83	332	235	166	2424	1616	1212	
10"	125	135	400	280	200	3266	2177	1633	
12"	167	182	463	326	235	3491	2327	1745	
14"	212	212	1328	885	1053	2656	1770	1328	
16"	276	276	1425	950	712	2850	1900	1424	

ADDITIONAL BELLOWS DATA

FLANGED END

WELD/THREAD END

	9 41444	0000000	KAAAAAAAA		.
 T				 1	
					~

SWEAT END

COMPENSATORS

SMALL DIAMETER

Metraflex Compensators are perfect for pipe diameters up to 4" when axial movement is required due to thermal expansion. They are stocked with both 2" and 3" compression ability in flanged, weld, thread, and sweat ends.

For greater movements and larger diameters, check our Metragator expansion joints.

Maximum Working Pressure	175 psi
Working Temperature	750 F
Test Pressure	250 psi
Bellows Multi-I	Ply T304 S/S

	COM-	END CONFIGURATION								
SIZE	PRES-	FLANGED		WELD/THF	READ END	SWEAT ENDS				
	SION	OAL (in)	WT (lbs)	OAL (in)	WT (lbs)	OAL (in)	WT (lbs)			
0/4"	2"	12-3/4	8	12-3/4	3	11	3/4			
3/4	3"	16-1/2	9	16-1/2	3	14-7/8	1			
4 "	2"	13-1/4	9	13-1/4	4	11-1/4	1			
	3"	16-1/2	10	16-1/2	4	15-1/8	1-1/2			
1-1/4"	2"	13-1/4	12	13-1/4	5	12-1/2	1-1/2			
	3"	16-1/2	13	16-1/2	5	16-3/8	2			
1 1/0"	2"	14-5/8	14	14-5/8	7	12-7/8	2			
1-1/2	3"	17-1/2	15	17-1/2	6	16-3/4	3			
0"	2"	14-5/8	18	14-5/8	10	13	3			
2	3"	17-1/2	20	17-1/2	8	17	4			
0.1/0"	2"	16	29	16	14	13-1/4	4			
2-1/2	3"	18-3/4	29	18-3/4	14	17	5			
0"	2"	16	34	16	18	14	4-1/2			
3	3"	19-1/4	36	19-1/4	16	18	6			
۸.,	2"	16-3/8	47	16-3/8	25	-	-			
4	3"	19-1/4	44	19-1/4	22	-	-			

BELLOWS CONNECTORS

WITH TIE RODS

The **Bellow Pump Connector,** which is kept stocked to 14" for fast delivery, is designed to meet a broad set of needs. It has a 2-ply construction and tie rods that allow it to work well, and economically, in many situations.

150 F Maximum Working Pressure	225 psi
212 F Maximum Working Pressure	190 psi
480 F Maximum Working Pressure	110 psi

	RIALS	
ITEM	PART	Material
1	Bellows (2 ply)	T304 S.S.
2	ANSI 150# Flange	Carbon Steel
3	Tie Rods	AISI-1020
4	Grommett	Neoprene
5	Nuts	ANSI-1020

SIZE	OAL (in)	COMPRESSION (in)	EXTENSION (in)	LATERAL (in)	NO. TIE RODS	WEIGHT (lbs.)
2"	6	0.9	0.2	0.66	3	12
2-1/2"	6	0.9	0.2	0.53	3	16
3"	6	0.9	0.2	0.45	3	18
4"	6	1	0.2	0.39	3	28
5"	6	1	0.2	0.31	3	34
6"	6	1	0.2	0.26	3	43
8"	6	1	0.2	0.22	3	63
10"	8	1.4	0.2	0.33	3	93
12"	8	1.4	0.2	0.26	3	120
14"	8	1.4	0.2	0.33	3	145

mmm

WELD END

......

E....E

FLANGED END

MODEL MNLC EXPANSION JOINTS

LOW CORRUGATION

The **MNLC Expansion Joints** provide perfect balance between value and performance. With two standard lengths and three pressure ratings available, they can be delivered quickly. Non-standard designs are also easily available.

Maximum Working Pressure 50/150/300 psi
Working Temperature
Test Pressure
End Fittings:
FlangesANSI B16.5
Weld Ends
Bellows

For other pressure ratings and materials, contact factory.

		сом	PRESS	SION*	FLANGED ENDS					WELD ENDS						
SIZE	SHORT/	50	150	300	50	psi	150	psi	300	psi	50	psi	150	psi	300	psi
	LONG	psi (in)	psi (in)	psi (in)	OAL (in)	WT (lbs)	OAL (in)	WT (lbs)	OAL (in)	WT (lbs)	OAL (in)	WT (lbs)	OAL (in)	WT (lbs)	OAL (in)	WT (lbs)
0"	S	1-1/8	1-1/8	3/4	6-1/2	11	6-1/2	11	6-1/2	12	9-7/8	3	9-7/8	3	9-7/8	3
2	L	1-3/4	1-3/4	1-1/4	8-1/2	13	8-1/2	13	8-1/2	14	11-3/4	4	11-3/4	4	11-3/4	4
0.1/0"	S	1	1	3/4	7	14	7	14	7	16	9-7/8	3	9-7/8	3	9-7/8	3
2-1/2	L	1-3/4	1-3/4	1-1/4	8-7/8	16	8-7/8	16	8-7/8	17	11-3/4	4	11-3/4	4	11-3/4	4
0"	S	1	1	3/4	7-3/8	17	7-3/8	20	7-3/8	21	10-1/2	5	10-1/2	5	10-1/2	5
3	L	2	2	1-3/8	9	18	9	21	9	22	12	6	12	6	12	7
4"	S	1-1/4	1-1/4	7/8	7-1/2	27	7-1/2	35	7-1/2	37	10-5/8	8	10-5/8	8	10-5/8	9
	L	2-1/2	2-1/2	1-3/4	10-3/4	28	10-3/4	38	10-3/4	40	13-3/4	9	13-3/4	9	13-3/4	10
5"	S	1-1/4	1-1/4	3/4	7-5/8	33	7-5/8	45	7-5/8	47	10-5/8	13	10-5/8	13	10-5/8	14
5	L	2-1/2	2-1/2	1-3/4	11-1/4	34	11-1/4	49	11-1/4	51	14-1/4	15	14-1/4	15	14-1/4	17
6"	S	1-1/4	1-1/4	3/4	8	43	8	85	8	89	11	18	11	18	11	20
0	L	2-1/2	2-1/2	1-3/4	11-1/2	47	11-1/2	90	11-1/2	94	14-1/2	20	14-1/2	20	14-1/2	22
0"	S	1-1/2	1-1/2	1	9-1/4	64	9-1/4	120	9-1/4	126	12-1/8	22	12-1/8	22	12-1/8	24
0	L	3	3	2	13-1/4	71	13-1/4	125	13-1/4	131	16-1/8	26	16-1/8	26	16-1/8	29
10"	S	1-1/2	1-1/2	1	9-3/8	45	9-3/8	160	9-3/8	168	12-1/8	25	12-1/8	25	12-1/8	27
10	L	3-3/8	3-1/4	2-1/2	14-3/8	52	14-3/8	170	14-3/8	179	17-1/4	32	17-1/4	32	17-1/4	35
12"	S	1-1/2	1-1/2	1	9-3/4	70	9-3/4	200	9-3/4	210	12-1/2	35	12-1/2	35	12-1/2	39
	L	3-1/4	3-1/8	2-1/4	13-1/2	85	13-1/2	220	13-1/2	231	16-1/4	42	16-1/4	42	16-1/4	46

* For lateral movements, consult factory.

** Doubles come with anchor bases and without bases (universal style). Consult factory for doubles information.

		сом	PRESS	SION*	FLANGED ENDS					WELD ENDS						
SIZE	SHORT/	50	150	300	50	psi	150	psi	300	psi	50	psi	150	psi	300	psi
	LONG	psi (in)	psi (in)	psi (in)	OAL (in)	WT (lbs)	OAL (in)	WT (lbs)	OAL (in)	WT (lbs)	OAL (in)	WT (lbs)	OAL (in)	WT (lbs)	OAL (in)	WT (lbs)
4.40	S	1-3/4	1-1/2	1	10-3/8	98	10-3/8	220	10-3/8	386	14-1/8	56	14-1/8	68	14-1/8	132
14	L	3-1/2	3	2	15	112	15	240	15	414	18-3/4	70	18-3/4	88	18-3/4	160
1.01	S	1-3/4	1-1/2	1-1/2	11-1/4	112	11-1/4	232	11-1/4	440	15	62	15	68	15	92
10	L	3-1/2	3	3	16-3/4	127	16-3/4	250	16-3/4	470	20-1/2	77	20-1/2	86	20-1/2	122
1.0	S	1-3/4	1-1/2	1-1/2	11-1/2	112	11-1/2	296	11-1/2	564	15	57	15	71	15	99
18	L	3-1/2	3	3	17	123	17	314	17	598	20-1/2	68	20-1/2	89	20-1/2	131
00"	S	1-3/4	1-1/2	1-1/2	13-3/8	130	13-3/8	378	13-3/8	710	15	72	15	88	15	113
20"	L	3-1/2	3	3	18-7/8	146	18-7/8	402	18-7/8	750	20-1/2	88	20-1/2	112	20-1/2	173
00"	S	1-3/4	1-1/2	1-1/2	14	140	14	426	14	830	15	78	15	100	15	152
22	L	3-1/2	3	3	19-1/2	157	19-1/2	454	19-1/2	875	20-1/2	95	20-1/2	128	20-1/2	202
04"	S	1-3/4	1-1/2	1-1/2	14-1/4	220	14-1/4	495	14-1/4	1030	15	88	15	116	15	180
24	L	3-1/2	3	3	19-3/4	240	19-3/4	520	19-3/4	1070	20-1/2	108	20-1/2	150	20-1/2	220
20"	S	1-3/4	1-1/2	-	9	370	9	**	-	-	11-1/2	128	11-1/2	196	-	-
30	L	3-1/2	3	-	14-1/2	405	14-1/2	**	-	-	17	162	17	264	-	-
06"	S	1-3/4	1-1/2	-	9	575	9	**	-	-	11-1/2	180	11-1/2	235	-	-
30	L	3-1/2	3	-	14-1/2	625	14-1/2	**	-	-	17	230	17	315	-	-
40"	S	1-3/4	1-1/2	-	9	770	9	**	-	-	11-1/2	205	11-1/2	265	-	-
42	L	3-1/2	3	-	14-1/2	830	14-1/2	**	-	-	17	355	17	355	-	-
40"	S	1-3/4	1-1/2	-	10-1/2	970	10-1/2	**	-	-	11-1/2	320	11-1/2	320	-	-
40	L	3-1/2	3	-	16	1030	16	**	-	-	17	420	17	420	-	-

* This table only shows standard designs. For other movements, lengths, or sizes, contact factory. ** Customer to specify flanges.

ADDITIONAL BELLOWS DATA

	EFF	BELLOWS SPRING CONSTANT (Lbs./Inch)									
SIZE	AREA	Ś	SHOR	Г	LONG						
	(sq in)	50 psi	150 psi	300 psi	50 psi	150 psi	300 psi				
2"	6	590	595	731	315	320	453				
3"	12	345	349	1138	231	240	759				
4"	19	800	803	1775	399	406	888				
5"	29	985	987	2059	465	480	961				
6"	40	1170	1181	2456	549	555	1146				
8"	66	1220	1235	2791	609	620	1395				
10"	104	1655	1669	2996	750	760	1226				
12"	146	784	1815	4586	435	957	2293				
14"	183	2200	3960	5120	1100	1990	2560				

	EFF	BELLOWS SPRING CONSTANT (Lbs./Inch)									
SIZE	AREA	,	SHORT	Г	LONG						
	(sq in)	50 psi	150 psi	300 psi	50 psi	150 psi	300 psi				
16"	237	1720	3360	4240	860	1680	2120				
18"	298	1640	5200	6500	820	2600	3240				
20"	362	1960	5600	7130	980	2800	3600				
22"	434	2040	5700	11800	1020	2850	5900				
24"	512	2460	6100	12300	1230	3030	6200				
30"	780	4940	10600	NA	2500	5300	NA				
36"	1105	5930	12510	NA	3000	6300	NA				
42"	1487	6920	13800	NA	3500	6900	NA				
48"	1925	7390	15800	NA	4000	7900	NA				

* For lateral movements, consult factory.
** Doubles come with anchor bases and without bases (universal style). Consult factory for doubles information.

M

WELD END

Inni

FLANGED END

HIGH CORRUGATION

The **Model MN** uses a hydroformed bellows for minimal residual stresses and minimal thinning at the convolution root and crown. It is an excellent choice for any application within the pressure ratings of the 150 and 50 psi classes.

Maximum Working Pressure 50 or 150 ps	i*
Working Temperature	F
Test Pressure	si
End Fittings:	
FlangesANSI B16.	.5
Weld Ends)5
Bellows	S

* Full vacuum rating.

			50PS	I CLAS	S, SIN	GLE*		150PSI CLASS, SINGLE*					
SIZE	NO.	MOVE	MENT*	FLAN	FLANGED		ENDS	MOVE	MENT*	FLAN	IGED	WELD	ENDS
-	CORR	COMP	EXT	OAL	WT	OAL	WT	COMP	EXT	OAL	WT	OAL	WT
		(in)	(in)	(in)	(lbs)	(in)	(lbs)	(in)	(in)	(in)	(lbs)	(in)	(lbs)
	1	3/8	1/8	6-1/4	19	8-1/8	9	1/4	1/8	6-1/4	19	8-1/8	9
	2	3/4	3/8	7-1/2	20	9-3/8	10	1/2	1/4	7-1/2	20	9-3/8	10
	3	1-1/8	1/2	8-3/4	21	10-5/8	11	3/4	3/8	8-3/4	21	10-5/8	11
2-1/2	4	1-1/2	3/4	10	22	11-7/8	12	1	1/2	10	22	11-7/8	12
& 3"	5	1-7/8	7/8	11-1/4	23	13-1/8	13	1-1/4	5/8	11-1/4	23	13-1/8	13
	6	2-1/4	1-1/8	12-1/2	24	14-3/8	14	1-1/2	3/4	12-1/2	24	14-3/8	14
	7	2-5/8	1-1/4	13-3/4	25	15-5/8	15	-	-	-	-	-	-
	8	3	1-1/2	15	26	16-7/8	16	-	-	-	-	-	-
	1	3/8	1/8	6-1/4	28	8-3/8	11	1/4	1/8	6-1/4	28	8-3/8	11
	2	3/4	3/8	7-1/2	29	9-5/8	12	1/2	1/4	7-1/2	29	9-5/8	12
	3	1-1/8	1/2	8-3/4	30	10-7/8	13	3/4	3/8	8-3/4	30	10-7/8	13
۸"	4	1-1/2	3/4	10	31	12-1/8	14	1	1/2	10	31	12-1/8	14
4	5	1-7/8	7/8	11-1/4	32	13-3/8	15	1-1/4	5/8	11-1/4	32	13-3/8	15
	6	2-1/4	1-1/8	12-1/2	33	14-5/8	16	1-1/2	3/4	12-1/2	33	14-5/8	16
	7	2-5/8	1-1/4	13-3/4	34	15-7/8	17	-	-	-	-	-	-
	8	3	1-1/2	15	35	17-1/8	18	-	-	-	-	-	-
	1	3/8	1/8	6-3/4	33	8-3/8	14	1/4	1/8	6-3/4	33	8-3/8	14
	2	3/4	3/8	8	35	9-5/8	16	1/2	1/4	8	35	9-5/8	16
	3	1-1/8	1/2	9-1/4	37	10-7/8	18	3/4	3/8	9-1/4	37	10-7/8	18
	4	1-1/2	3/4	10-1/2	39	12-1/8	20	1	1/2	10-1/2	39	12-1/8	20
5"	5	1-7/8	7/8	11-3/4	41	13-3/8	22	1-1/4	5/8	11-3/4	41	13-3/8	22
5	6	2-1/4	1-1/8	13	43	14-5/8	24	1-1/2	3/4	13	43	14-5/8	24
	7	2-5/8	1-1/4	14-1/4	45	15-7/8	26	-	-	-	-	-	-
-	8	3	1-1/2	15-1/2	47	17-1/8	28	-	-	-	-	-	-
	9	-	-	16-3/4	49	18-3/8	30	-	-	-	-	-	-
	10	-	-	18	51	19-5/8	32	-	-	-	-	-	-

*Consult factory for Double information and for lateral movements.

			50PS	I CLAS	SS, SIN	GLE*	150PSI CLASS, SINGLE*						
SIZE	NO.	MOVE	MENT*	FLAN	IGED	WELD	ENDS	MOVE	MENT*	FLAN	IGED	WELD	ENDS
OILL	CORR	COMP	EXT	OAL	WT	OAL	WT	COMP	EXT	OAL	WT	OAL	WT
		(in)	(in)	(in)	(lbs)	(in)	(lbs)	(in)	(in)	(in)	(lbs)	(in)	(lbs)
	1	1/2	1/4	6-1/4	43	7-5/8	20	3/8	1/8	6-1/4	43	7-5/8	20
	2	1	1/2	8	46	9-3/8	23	3/4	3/8	8	46	9-3/8	23
	3	1-1/2	3/4	9-3/4	49 52	11-1/8	26	1-1/8	1/2	9-3/4	49 52	11-1/8	26
	5	2-1/2	1-1/4	13-1/4	55	14-5/8	32	1-7/8	7/8	13-1/4	55	12-7/8	32
6"	6	3	1-1/2	15	58	16-3/8	35	2-1/4	1-1/8	15	58	16-3/8	35
	7	3-1/2	1-3/4	16-3/4	61	18-1/8	38	-	-	-	-	-	-
	8	4	2	18-1/2	64	19-7/8	41	-	-	-	-	-	-
	9	4-1/2	2-1/4	20-1/4	67	21-5/8	44	-	-	-	-	-	-
	10	5	2-1/2	22	70	23-3/8	47	-	-	-	-	-	-
	1	1/2	1/4	6-1/2	58	9-5/8	28	3/8	1/8	6-1/2	64	9-5/8	28
	2	1 1/2	1/2	8-1/4	62	11-3/8	32	3/4	3/8	8-1/4	66	11-3/8	32
	3	1-1/2	3/4	11-3/4	70	1/-7/8	40	1-1/0	3/4	11_3/4	70	1/-7/8	30
	5	2-1/2	1-1/4	13-1/2	74	16-5/8	44	1-7/8	7/8	13-1/2	74	16-5/8	44
8"	6	3	1-1/2	15-1/4	78	18-3/8	48	2-1/4	1-1/8	15-1/4	78	18-3/8	48
	7	3-1/2	1-3/4	17	82	20-1/8	52	2-5/8	1-1/4	17	82	20-1/8	52
	8	4	2	18-3/4	86	21-7/8	56	3	1-1/2	18-3/4	86	21-7/8	60
	9	4-1/2	2-1/4	20-1/2	90	23-5/8	60	-	-	-	-	-	-
	10	5	2-1/2	22-1/4	94	25-3/8	64	-	-	-	-	-	-
	1	1/2	1/4	6-7/8	76	9-3/4	31	3/8	1/8	6-7/8	89	9-3/4	31
	2	1	1/2	8-3/4	80	11-5/8	35	3/4	3/8	8-3/4	91	11-5/8	35
	3	2	3/4	10-5/6	04 88	15-1/2	43	1-1/0	3/4	10-5/6	93	15-1/2	43
	5	2-1/2	1-1/4	14-3/8	92	17-1/4	47	1-7/8	7/8	14-3/8	97	17-1/4	47
10"	6	3	1-1/2	16-1/4	96	19-1/8	51	2-1/4	1-1/8	16-1/4	99	19-1/8	51
	7	3-1/2	1-3/4	18-1/8	100	21	55	2-5/8	1-1/4	18-1/8	102	21	55
	8	4	2	20	104	22-7/8	59	3	1-1/2	20	105	22-7/8	59
	9	4-1/2	2-1/4	21-7/8	108	24-3/4	63	-	-	-	-	-	-
	10	5	2-1/2	23-3/4	112	26-5/8	67	-	-	-	-	-	-
	1	1/2	1/4	7-7/8	118	10-3/8	33	3/8	1/8	7-7/8	135	10-3/8	33
	2	1 1/2	2/4	9-3/4	123	12-1/4	38	3/4	3/8	9-3/4	1.37	12-1/4	38
	4	2	3/4	13-1/2	133	14-1/0	43	1-1/2	3/4	13-1/2	141	14-1/0	43
4.01	5	2-1/2	1-1/4	15-3/8	138	17-7/8	53	1-7/8	7/8	15-3/8	144	17-7/8	53
12"	6	3	1-1/2	17-1/4	143	19-3/4	58	2-1/4	1-1/8	17-1/4	145	19-3/4	58
	7	3-1/2	1-3/4	19-1/8	148	21-5/8	63	2-5/8	1-1/4	19-1/8	147	21-5/8	63
	8	4	2	21	153	23-1/2	68	3	1-1/2	21	150	23-1/2	68
	9	4-1/2	2-1/4	22-7/8	158	25-3/8	73	-	-	-	-	-	-
	10	5	2-1/2	24-3/4	163	27-1/4	78	-	-	-	-	-	-
	1	5/8	1/4 5/9	8-3/8	160	10-3/8	70	3/8	1/8	8-3/8	1//	10-3/8	70
	3	1-1/4	7/8	12-1/8	172	12-1/4	82	1-1/8	1/2	12-1/8	184	12-1/4	82
	4	2-1/2	1-1/4	14	178	16	88	1-1/2	3/4	14	188	16	88
4 / 11	5	3-1/8	1-1/2	15-7/8	184	17-7/8	94	1-7/8	7/8	15-7/8	192	17-7/8	94
14	6	3-3/4	1-7/8	17-3/4	190	19-3/4	100	2-1/4	1-1/8	17-3/4	196	19-3/4	100
	7	4-3/8	2-1/8	19-5/8	196	21-5/8	106	2-5/8	1-1/4	19-5/8	200	21-5/8	106
	8	5	2-1/2	21-1/2	202	23-1/2	112	3	1-1/2	21-1/2	206	23-1/2	112
	9	5-5/8	2-3/4	23-3/8	208	25-3/8	118	-	-	23-3/8	212	25-3/8	118
	10	6-1/4 5/0	3-1/8	25-1/4	214	2/-1/4	124	- 2/0	- 1/0	25-1/4	217	2/-1/4	124
	2	5/8 1-1/4	5/8	0-3/0	184	12-1/4	87	3/8	3/8	0-3/8 10-1/4	201	12-1/4	87
	3	1-7/8	7/8	12-1/8	191	14-1/8	94	1-1/8	1/2	12-1/8	205	14-1/8	94
	4	2-1/2	1-1/4	14	198	16	101	1-1/2	3/4	14	209	16	101
16"	5	3-1/8	1-1/2	15-7/8	205	17-7/8	108	1-7/8	7/8	15-7/8	213	17-7/8	108
	6	3-3/4	1-7/8	17-3/4	212	19-3/4	115	2-1/4	1-1/8	17-3/4	218	19-3/4	115
	7	4-3/8	2-1/8	19-5/8	219	21-5/8	122	2-5/8	1-1/4	19-5/8	223	21-5/8	122
	8	5	2-1/2	21-1/2	226	23-1/2	129	3	1-1/2	21-1/2	230	23-1/2	129
	9	5-5/8	2-3/4	23-3/8	233	25-3/8	136	3-3/8	1-5/8	23-3/8	236	25-3/8	136

* Consult factory for Double information and for lateral movements

6

WELD END

10

NÏ

FLANGED END

MODEL MC EXPANSION JOINTS SELF EQUALIZING, RING CONTROLLED

As in the Model MN expansion joints, the Model MC utilizes a hydroformed bellows. It also provides the ultimate in control and safety with self equalizing control rings.

Maximum Working Pressure
Working Temperature
Test Pressure 450 psi
End Fittings:
Flanges
Weld Ends
Bellows

* 300 psi is the bellows rating. Flange rating must also be considered. Full vacuum rating.

		COM-		FLANGE	DENDS		WELD ENDS				
SIZE	# CORR	SION*	SIN	GLE	DOUI	BLE**	SIN	GLE	DOUE	BLE**	
		(in)	OAL (in)	WT (lbs)	OAL (in)	WT (lbs)	OAL (in)	WT (lbs)	OAL (in)	WT (lbs)	
	1	3/8	7-1/4	28	- ,	-	13-5/8	25	-	-	
	2	3/4	8-3/4	35	21-1/8	90	15-1/4	30	27-1/2	85	
	3	1-1/8	10-3/8	42	24-3/8	109	16-7/8	37	30-3/4	100	
2-1/2"	4	1-1/2	12	49	27-5/8	125	18-1/2	45	34	115	
0 0"	5	1-7/8	13-5/8	57	30-7/8	134	20-1/8	52	37-1/4	130	
ασ	6	2-1/4	15-1/4	64	34-1/8	149	21-3/4	60	40-1/2	145	
	7	2-5/8	16-7/8	72	37-3/8	165	23-3/8	68	43-3/4	161	
Effective	8	3	18-1/2	80	40-5/8	175	25	70	47	177	
Area =	9	3-3/8	20-1/4	88	43-7/8	197	26-5/8	84	50-1/4	195	
21 sq in	10	3-3/4	21-3/4	95	47-1/8	211	28-1/4	91	53-1/2	207	
	11	4-1/8	23-1/8	103	50-3/8	227	29-7/8	99	56-3/4	224	
	12	4-1/2	24-3/4	110	53-5/8	235	31-1/2	100	60	241	
	13	4-7/8	26-3/8	118	-	-	33-1/8	114	-	-	
	1	3/8	7-1/4	40	-	-	13-5/8	30	-	-	
	2	3/4	8-3/4	50	21-1/8	125	15-1/4	40	27-1/2	105	
4.11	3	1-1/8	10-3/8	60	24-3/8	135	16-7/8	49	30-3/4	123	
	4	1-1/2	12	68	27-5/8	151	18-1/2	58	34	141	
4″	5	1-7/8	13-5/8	77	30-7/8	169	20-1/8	67	37-1/4	139	
	6	2-1/4	15-1/4	85	34-1/8	186	21-3/4	76	40-1/2	177	
Effective	7	2-5/8	16-7/8	90	37-3/8	200	23-3/8	85	43-3/4	195	
Area =	8	3	18-1/2	100	40-5/8	219	25	94	47	213	
29 sq in	9	3-3/8	20-1/4	110	43-7/8	238	26-5/8	103	50-1/4	231	
20 09	10	3-3/4	21-3/4	120	47-1/8	257	28-1/4	112	53-1/2	250	
	11	4-1/8	23-1/8	127	50-3/8	284	29-7/8	122	56-3/4	269	
	12	4-1/2	24-3/4	135	53-5/8	311	31-1/2	132	60	289	
	13	4-7/8	26-3/8	143	-	-	33-1/8	143	-	-	
	1	3/8	7-1/4	50	-	-	13-5/8	40	-	-	
	2	3/4	8-3/8	60	21-1/8	135	15-1/4	50	27-1/2	125	
	3	1-1/8	10-3/8	70	24-3/8	155	16-7/8	60	30-3/4	145	
F "	4	1-1/2	12	80	27-5/8	177	18-1/2	72	34	170	
5	5	1-7/8	13-5/8	90	30-7/8	198	20-1/8	83	37-1/4	190	
	6	2-1/4	15-1/4	100	34-1/8	220	21-3/4	95	40-1/2	215	
Effective	7	2-5/8	16-7/8	115	37-3/8	250	23-3/8	105	43-3/4	230	
Area =	8	3	18-1/2	125	40-5/8	266	25	116	47	257	
40 sa in	9	3-3/8	20-1/4	135	43-7/8	288	26-5/8	128	50-1/4	281	
	10	3-3/4	21-3/4	145	47-1/8	310	28-1/4	140	53-1/2	305	
	11	4-1/8	23-1/8	160	50-3/8	335	29-7/8	150	56-3/4	325	
	12	4-1/2	24-3/4	170	53-5/8	355	31-1/2	160	60	345	
	13	4-7/8	26-3/8	180	-	-	33-1/8	171	-	-	

* For lateral movements, consult factory.

** Double end units come with anchor bases and without bases (universal style). Consult factory for doubles information.

		сом-		FLANGE	D ENDS		WELD ENDS			
SIZE	# CORR	PRES-	SIN	GLE	DOU	BLE**	SIN	GLE	DOU	BLE**
		(in)	OAL (in)	WT (lbs)	OAL (in)	WT (lbs)	OAL (in)	WT (lbs)	OAL (in)	WT (lbs)
	1	3/4	9-1/2	95	-	-	19	90	-	-
	2	1-1/2	12-3/4	120	29-1/4	270	22-1/4	110	38-3/4	260
6"	3	2-1/4	16	145	35-3/4	320	25-1/2	135	45-1/4	310
	5	3-3/4	22-1/2	205	42-1/4	425	32	180	58-1/4	400
Effective	6	4-1/2	25-3/4	230	55-1/4	470	35-1/4	200	64-3/4	425
Area =	7	5-1/4	29	255	61-3/4	520	38-1/2	225	71-1/4	475
62 sq in	8	6	32-1/4	280	68-1/4	570	41-3/4	250	77-3/4	540
	9	6-3/4	35-1/2	305	74-3/4	625	45	280	84-1/4	600
	10	3/4	<u>38-3/4</u> 0_1/2	320	81-1/4	675	48-1/4	125	90-3/4	670
	2	1-1/2	12-3/4	165	29-1/4	357	22-1/4	152	38-3/4	344
8"	3	2-1/4	16	190	35-3/4	410	25-1/2	180	45-1/4	400
Ŭ	4	3	19-1/4	225	42-1/4	475	28-3/4	210	51-3/4	460
Effective	5	3-3/4	22-1/2	250	48-3/4	490	32	240	58-1/4	520
Area –	6	4-1/2	25-3/4	280	55-1/4	590	35-1/4	270	64-3/4	580
92 sq in	/	5-1/4	29	310	68-1/4	650 705	38-1/2	300	71-1/4	640 700
	9	6-3/4	35-1/2	375	74-3/4	705	45	360	84-1/4	760
	10	7-1/2	38-3/4	415	81-1/4	845	48-1/4	390	90-3/4	820
	1	3/4	10-1/2	165	-	-	19	150	-	-
10"	2	1-1/2	13-3/4	200	29-1/4	442	22-1/4	182	38-3/4	424
10	3	2-1/4	17	240	35-3/4	515	25-1/2	215	45-1/4	490
THe ethics	4	3-3/4	20-1/4	270	42-1/4	550 640	28-3/4	250	51-3/4	560 620
Area -	6	4-1/2	26-3/4	340	55-1/4	715	35-1/4	315	64-3/4	690
135 sq	7	5-1/4	30	375	61-3/4	785	38-1/2	350	71-1/4	760
in	8	6	33-1/4	400	68-1/4	840	41-3/4	380	77-3/4	820
	9	6-3/4	36-1/2	440	74-3/4	915	45	415	84-1/4	890
	10	7-1/2	39-3/4	475	81-1/4	985	48-1/4	450	90-3/4	960
	1	3/4	11	280	-	-	19	1/5	-	-
12"	3	2-1/4	14-1/4	365	32-1/2	675	22-1/4	250	40-3/4	400 560
	4	3	20-3/4	405	45-1/2	755	28-3/4	290	53-3/4	650
Effective	5	3-3/4	24	445	52	835	32	330	60-1/4	720
Area =	6	4-1/2	27-1/4	485	58-1/2	875	35-1/4	370	66-3/4	800
175 sq	7	5-1/4	30-1/2	525	65	995	38-1/2	410	73-3/4	880
in	8	6	33-3/4	570	79	1075	41-3/4	445	79-3/4	950
	10	7-1/2	40-1/4	650	70 84-1/2	1235	45	490 525	92-3/4	1110
	1	3/4	13-1/4	252	-	-	14-1/2	127	-	-
	2	1-1/2	15-1/4	286	33	597	16-1/2	161	35	472
14"	3	2-1/4	17-1/4	319	37	663	18-1/2	194	39	538
	4	3	19-1/4	351	41	727	20-1/2	226	43	602
Effective	5	3-3/4	21-1/4	384	45	793	22-1/2	259	47 51	668
Area =	7	5-1/4	25-1/4	450	53	925	26-1/2	325	55	800
205 SQ	8	6	27-1/4	483	57	991	28-1/2	358	59	866
	9	6-3/4	29-1/4	516	61	1057	30-1/2	391	63	932
	10	7-1/2	31-1/4	549	65	1123	32-1/2	424	67	998
	1	3/4	13-1/4	295	-	-	14-1/2	158	-	-
16"	2	2-1/4	15-1/4	365	33	743	10-1/2	228	30	530 606
	4	3	19-1/4	400	41	813	20-1/2	263	43	676
Effective	5	3-3/4	21-1/4	435	45	883	22-1/2	298	47	746
Area =	6	4-1/2	23-1/4	472	49	957	24-1/2	335	51	820
268 sq	7	5-1/4	25-1/4	508	53	1029	26-1/2	371	55	892
in	8	6	27-1/4	542	57	1097	28-1/2	405	59	960
	10	7-1/2	31-1/4	614	65	1241	33-1/2	477	67	11032
	1	13/16	10-5/16	378	-	-	14-1/2	189	-	-
	2	1-5/8	12-3/8	416	30	800	16-9/16	227	35-1/8	610
18"	3	2-7/16	14-7/8	456	34-1/8	880	18-5/8	267	39-1/4	690
	4	3-1/4	16-1/2	494	38-1/4	955	20-11/16	305	43-3/8	766
Effective	5	4-1/16	18-9/16	534	42-3/8	1035	22-3/4	345	47-1/2	846
Area =	0	4-7/8 5-11/16	20-5/8 22-11/16	5/3 613	40-1/2 50-5/8	1195	24-13/10 26-7/8	<u> </u>	55-3/A	925
325 sq	8	6-1/2	24-3/4	651	54-3/4	1273	28-15/16	362	59-7/8	1080
l n	9	7-5/16	26-13/16	691	58-7/8	1350	31	502	64	160
	10	8-1/8	28-7/8	730	63	1430	33-1/16	541	68-1/8	1238

* For lateral movements, consult factory. ** Double end units come with anchor bases and without bases (universal style). Consult factory for doubles information.

		COM- PRES- SION* (in)		FLANGE	D ENDS			WELD	ENDS	
SIZE	# CORR		SIN	GLE	DOU	BLE**	SIN	GLE	DOU	BLE**
			OAL (in)	WT (lbs)						
	1	13/16	11-13/16	460	-	-	14-1/2	210	-	-
	2	1-5/8	13-7/8	513	33-1/2	1076	16-9/16	263	37-1/8	826
20"	3	2-7/16	15-15/16	566	37-5/8	1182	18-5/8	316	40-1/4	932
	4	3-1/4	18	619	41-3/4	1288	20-11/16	369	45-3/8	1038
Effective	5	4-1/16	20-1/16	672	45-1/8	1394	22-3/4	422	49-1/2	1144
Area =	6	4-7/8	22-1/8	725	50	1500	24-13/16	475	53-5/8	1250
392	7	5-11/16	24-3/16	778	55-1/8	1606	26-7/8	528	57-3/4	1356
sq in	8	6-1/2	26-1/4	831	58-5/8	1702	28-15/16	581	61-7/8	2008
3q ili	9	7-5/16	28-5/16	884	62-1/8	1818	31	634	66	1298
	10	8-1/8	30-3/8	937	65-5/8	1924	33-1/16	687	70-1/8	1674
	1	13/16	12-13/16	539	-	-	14-1/2	240	-	-
	2	1-5/8	14-7/8	585	34-1/4	1180	16-9/16	294	38	888
24"	3	2-7/16	16-15/16	630	38-3/8	1275	18-5/8	345	40-1/4	990
	4	3-1/4	19	675	42-1/2	1373	20-11/16	398	45-3/8	1096
Effective	5	4-1/16	21	720	45-7/8	1470	22-3/4	452	49-1/2	1204
Area =	6	4-7/8	22-7/8	766	50-3/4	1576	24-13/16	510	53-5/8	1320
540	7	5-11/16	25	811	55-7/8	1671	26-7/8	560	57-3/4	1420
eq in	8	6-1/2	27	857	59-3/8	1767	28-15/16	610	61-7/8	1520
^o y III	9	7-5/16	29	903	62-7/8	1857	31	654	66	1603
	10	8-1/8	31-1/8	957	66-3/8	1974	33-1/16	717	70-1/8	1734

ADDITIONAL BELLOWS DATA

SIZE	BELLOWS EFFECTIVE AREA (Inches Squared)	BELLOWS SPRING CONSTANT (Lbs./Inch/Corrugation)
2-1/2"	21	2600
3"	21	2600
4"	29	2800
5"	40	3100
6"	62	3500
8"	92	3700
10"	135	4000
12"	175	4200
14"	205	4400
16"	268	4700
18"	325	5000
20"	392	5400
24"	540	6200

* For lateral movements, consult factory. ** Double end units come with anchor bases and without bases (universal style). Consult factory for doubles information.

METRALOOP: Thermal and Seismic Expansion Joint

ALL METALLIC CONSTRUCTION

No Thrust Loads Unlimited Movement 1/2" to 24" diameter

THERMAL EXPANSION: AXIAL MOVEMENT

SEISMIC MOVEMENT: ALL DIRECTIONAL

Drawn to Scale Pipe Guide Anchor Anchor Loads Loads X:= 0000 **X** 12800 Lbs. 12800 Lbs. **Bellows Expansion Joint** X = **- X** 1200 Lbs. 1200 Lbs. - 36" X 202 Lbs. × 2X 202 Lbs. **Design Conditions** 98% less anchor load than Pipe -6 inch Schedule 40 **Bellows Expansion Joint** Movement -4" Axial Compression 13' 83% less anchor load than Pressure -150 PSI Hard Pipe Loop Temperature -300°F Length of Run - 177 feet · 75% less space required than Hard Pipe Loop 6' - 6" Hard Pipe Loop

For complete details request the Metraloop Design Guide or go to www.metraflex.com

www.metraflex.com

Bellows Designs

BELLOWS EXPANSION JOINT STYLES

Axial bellows expansion joints are designed to accommodate compressive or extension movements along the bellows longitudinal axis. Movements available can be specified as amounts from a "neutral length". The neutral length is the theoretical length before movement. From this neutral length, the unit will provide movement in either extension or compression. Therefore, to utilize all the movement available from the unit when it is known that the movement will be in one direction only, it is recommended that the units be installed with either pre-extension or pre-compression, depending upon the pipe movement.

Care is required during installation to ensure that the unit is installed at its correct length so that it will only work within its specified limit. Any deviation would have a detrimental affect upon bellows life. Axial units must also be adequately anchored and guided.

Axial bellows are supplied flanged, grooved, or with beveled ends suitable for welding into pipelines, or with a combination of both.

Externally Pressurized Axial Joint

Applications where long axial movements exist have resulted in the development of the externally pressurized unit. In these units, working pressure is transferred to the outside of the bellows via a gap between the internal flange and housing. Standards are available in 4", 6" and 8" of movement. Compensators are also available in 3" models for 4" diameter and below.

Untied Universal Joint

A universal/double expansion joint assembly is formed by connecting two bellows with a length of center pipe. This type of unit will cater to both axial and lateral movements. Although a conventional axial bellows will offer a limited amount of lateral movement, it is usually advisable for a universal unit to be used if the amount of lateral movement required is significant.

Anchor bases can be placed on the middle spool to make a double joint, with movement on both sides of the anchor.

Bellows Designs

BELLOWS EXPANSION JOINT STYLES

For higher pressure applications, where there is a limitation to the forces that the connecting pipe can accommodate, universal joints are restrained against the elongation effect due to pressure end load by the use of tie bars. These are designed to contain the pressure end load within the unit length, and do not transmit this load to the adjacent piping system.

Double Hinge Bellows are basically two Single Hinge Bellows combined into one unit with a common tie bar joining the two ends. Therefore, any expansion of the center pipe within the limits of the tie bar will simply compress the bellows, and will not exert movement on the adjoining pipe. This type of unit allows for lateral movement in one plane only.

Hinge units offer movement in one plane only, and operate by angulating the bellows. The pressure end load is contained by the hinge parts; therefore, this type of assembly is ideal where it is not practical to install heavy guiding or strong anchors.

Single Hinge Bellows are usually used in pairs to give lateral movement in one plane.

Gimbal Bellows are designed to allow angular rotation in any plane using two pairs of hinges fixed to a common floating gimbal ring. The gimbal ring and hinge parts are designed to restrain the end thrust of the expansion joint due to internal pressure and any external forces which are imposed on the joint.

As in the case of Single Hinge Bellows, Gimbal Bellows are usually used in pairs to give lateral movement in any plane.

Bellows Designs

INTERNAL LINERS

Internal liners are recommended where the following conditions exist in a piping system:

- 1. In steam lines where the velocity of flow would set up vibration within the bellows.
- 2. In compressed air pipes.
- 3. In ducts carrying exhaust gases.
- 4. Where the flowing media is abrasive; i.e., contains solid particles which could damage the inside of the bellows.
- 5. Where turbulent flow exists; for example, when bellows are positioned downstream of an elbow, valve or adjacent to recirculating pumps. In such a case, due to the possibility of vibration being set up within the bellows, it is often necessary to fit heavy liners.
- 6. If liners are required in systems which are subject to flow reversal when the flow is high velocity, it is often necessary to either fit thick carbon steel liners or strengthen the leading edge of the thin gauge stainless liners normally used. The effects of the flow would otherwise cause the leading edge of the sleeve to vibrate and shatter.

As a general rule, liners are necessary when the flow rate exceeds 10 ft./sec. They are available in slide-in "top hat" designs, or welded-in designs.

AXIAL BELLOWS APPLICATION PROCEDURE

When designing your axial bellows system, use the following procedure:

- 1. Calculate thermal expansion.
- 2. Establish position of bellows.
- 3. Establish position of guides.
- 4. Calculate forces acting on anchors.

Once these four tasks have been completed, you will have all the information you require to complete your design of an axial bellows system. By referring to the data sheets on axial bellows, you can select specific bellows to meet your requirements, or you can define your requirements in terms related to standard units.

CALCULATING THERMAL EXPANSION

Refer to the Engineering Data section of this publication. Page 20

ESTABLISHING POSITION OF BELLOWS

In theory, bellows can be positioned anywhere between two anchors, but in practice, one of only two positions is used:

- 1. Near one anchor.
- 2. At the center of the pipe.

When an axial bellows unit is positioned near a main anchor, it is installed within four pipe diameters of the anchor to eliminate the necessity for a guide between the bellows unit and the anchor. However, it is normal to position guides between the bellows and the other anchor.

When an axial bellows unit is positioned near the center of the pipe between the anchors, guides must be positioned on both sides of the bellows unit to prevent bowing. By spreading the load equally on both sides of the bellows, deflection on small bore branch lines is kept to a minimum.

ESTABLISHING POSITION OF GUIDES

Proper guiding of a pipe is essential if axial bellows units are to function correctly. Guides are necessary to ensure proper application of movement to the bellows and to prevent bowing or buckling of the pipeline. When using axial bellows units, the first guide should be positioned within a distance of four pipe diameters from the bellows unit. The distance between the first guide and the second must not be more than fourteen pipe diameters. For more details, see the Metraflex Pipe Guide catalog.

ESTABLISHING POSITION OF GUIDES

Position pipe guides per the recommendations of the Expansion Joint Manufacturer's Association.

For example, the guide spacing in a length of pipe containing an axial bellows unit with an operating pressure of 125 psig and a nominal bore of 6 in. would be:

1st Guide: 4 x pipe dia. = 24" from the bellows unit

2nd Guide: 14 x pipe dia. = 7' from the 1st guide

Intermediate Guides: Every 40' thereafter

CALCULATING "COLD-PULL" DIMENSIONS

Bellows movement can be expressed as a \pm figure based on the factory supplied length. This represents the movement in expansion and compression of which a bellows is capable. However, because it is more usual to find pipes carrying hot media than cold media (except, of course, in cryogenic applications), bellows are usually selected for their capacity to compensate for pipe expansion. In order to make maximum use of the total movement available in any one bellows, it is therefore necessary to install the unit "pre-stretched" into the pipe system to give it greater compression potential. This degree of "stretching" is termed its "cold-pull or sprung" dimension.

It is essential that a bellows is never over-compressed or over-extended. Knowing the anticipated maximum and minimum operating temperatures is vital in order to make suitable provision for thermal expansion at installation. If, for example, an axial unit stretched to its maximum extension is installed in a heat-wave, a hard frost six months later could over extend the bellows.

Given known maximum and minimum operating temperatures, total movement potential of the bellows unit, and the required movement calculated from the thermal expansion, it is a matter of simple arithmetic to calculate the necessary length at installation temperature to ensure safe operation throughout the temperature range specified.

Anchoring and Guiding

Proper guiding and anchoring is essential to an installation of expansion joints or pipe loops. They will prevent the pipe from squirming or buckling and are required to ensure the manufacturer's warranty.

Anchors at each end of the pipe run must be stronger than the force needed to compress the joint. Depending upon system pressure, this force may be many thousands of pounds. See example installation on page 23.

Guides permit axial movement of the pipe while restraining both lateral and angular movement. The quantity and location of the guides is dependent upon the natural flexibility of the pipe and the pressure rating of the system. Guides should be installed per the following chart.

Effect of thrust from internal pressure without anchors.

Effect of thermal expansion

PROPER ALIGNMENT OF ANCHORS AND GUIDES. (Illustration shows 2 guides on each side of the joint because joint is installed in the middle of the pipe run.)

CONCENTRIC PIPE GUIDE SPACING

* Data Per Expansion Joint Manufacturers Association

Pipe Size	Maximum Distance To	Approx. Distance Between	Approximate Distance Between Additional Pipe Guides (In feet)						
·	1 st Guide	1st to 2nd Guide	@ 50 PSI	@ 100 PSI	@ 150 PSI	@ 300 PSI			
1"	4"	1'4"	21'	15'	12'	10'			
1-1/4"	5"	1'5"	23	17	13	12			
1-1/2"	6"	1'9"	28	20	17	13			
2"	8"	2'4"	32	23	18	15			
2-1/2"	10"	2'11"	35	28	22	20			
3"	ין	3'6"	38	28	23	17			
3-1/2"	1'2"	4'1"	45	35	27	19			
4"	1'4"	4'8"	52	38	31	22			
5"	1'8"	5'8"	63	45	38	25			
6"	2'	7'	68	48	40	28			
8"	2'8"	9'4"	87	62	45	38			
10"	3'4"	11'8"	107	75	60	48			
12"	4'	14'	118	85	70	50			
14"	4'8"	16'4"	122	88	72	55			
16"	5'4"	18'8"	137	96	80	60			
18"	6'	21'	145	105	85	65			
20"	6'8"	23'4"	160	118	90	70			
24"	8'	28'	181	125	105	75			

CALCULATING FORCES ACTING ON ANCHORS

To calculate the sum total of forces acting on any anchor in a pipe system incorporating axial bellows, you must calculate the following:

- 1. Deflection load.
- 2. Pressure thrust.
- 3. Frictional resistance.
- 4. Centrifugal force.

Each must be examined individually before arriving at the sum of the forces acting on an anchor point.

Before calculating the forces, the following points must be considered:

- 1. If the pipe changes direction at an anchor point, the resultant of the two forces acting on both sides should be calculated.
- If there is a change of diameter in a long straight pipe, an intermediate anchor between bellows of different diameters will be subject to the differential thrust from each side.
- If, due to the presence of a valve in the pipe run, some bellows are pressurized while other are not, the anchor between the valve and the bellows must be considered as a main anchor.

Deflection Load - Deflection load is due to the spring rate of the axial bellows, a force which is given in each individual data sheet. To calculate the deflection load on any anchor you apply the following formula:

> Deflection force = Spring rate x movement*

* For high corrugation joints where number of corrugations can vary, movement must be divided by the number of corrugations.

CALCULATING FORCES ACTING ON ANCHORS

Pressure Thrust - Pressure thrust is the force due to internal or external pressure trying to open out the bellows (as with a piston in a cylinder), and is calculated using the following formula:

Pressure thrust = Test Pressure x bellows effective area

As illustrated below, the effective cross-section of a bellows is the mean diameter of the bellows, taking the tip and the root of the convolutions as the extremes.

Values for effective area (and spring rate) are given for each unit in the data sheets.

Frictional Resistance - The frictional resistance of a pipe moving over its guides can be calculated using the following formula:

Frictional resistance = Coefficient of resistance of guide* x total weight of pipe†

- * It is normal for guide manufacturers to give coefficient of friction values in their engineering specifications, but in the event of this not being available, the value 0.3 can be taken for the majority of installations.
- † The total weight of the pipe between anchors is the sum of pipe weight, media weight in that section of pipe, insulation, and attached equipment, if any.

Centrifugal Thrust - In the case of anchors situated at a pipe elbow, with high velocities and large diameters the affect of centrifugal thrust due to flow of media within the pipe must be considered. This can be calculated using the following formula:

Centrifugal thrust = $\frac{2Apv^2}{g} \times Sin\frac{\theta}{2}$

Where: A = Internal area of pipe p = Density of media v = Velocity of flow g = 32 ft./sec.² θ = Angle of pipe elbow

Force on Intermediate Anchors - There is a limit to the amount of movement you can get out of a single axial bellows, and when you are faced with an expansion problem in a straight run of pipe which requires more movement than you can get out of one bellows, you must install additional bellows, and with them, additional or intermediate anchors.

If the pipe is the same diameter throughout its length, and run is of equal length on each side of expansion joint the thrusts on intermediate anchors are balanced by the bellows on either side and, in theory, there is no force on the anchor once the full expansion has been taken up. It is recommended, however, that the load on intermediate anchors

be calculated on the assumption that the pipe will warm up from one end. Hence the load on intermediate anchors would be equal to the sum of the deflection force and the friction force, calculated in the same way as for a main anchor. If expansion joint is not centered in the pipe run, calculate longer pipe run to determine required force for intermediate anchor.

COMPLEX AXIAL INSTALLATION EXAMPLE

The requirement is to select suitable axial units from the data sheets, calculate forces acting on anchor points, and establish the position of guides and anchors.

For the purpose of example, we have specified a pipe system of varying pipe sizes to carry steam at 140 psig and 360° F. The extremes of the line shown at the boiler house and where the line rises to ground level can be considered as anchors. The branches on the 150 ft. pipe run can be considered as flexible. Installation temperature is assumed to be 50° .

Step 1 - Calculate thermal expansions in each straight pipe section and position anchors so that expansion between anchors is within data sheet specified movements. For maximum economy in bellows systems, use natural flexibility of pipe where feasible (see Engineering Data section).

Take thermal expansion as 2.52 in./100 ft.

The following table lists details of bellows type and installed length for each pipe section.

Pipe Section	Leg Length (ft.)	Total Expn. (in.)	Bellows Model No.	Installed Length (in.)	Installation Notes
1	75	1.89	6" MODEL C, 3 corrugations with weld ends	28-3/4	Unit installed near anchor.
2	150	3.78	6* MODEL C, 6 corrugations with weld ends	25-1/4	Unit installed at center pipe section to reduce deflection of branches.
3a 3b	125	3.15 3.15	6" MODEL C, 5 corrugations with weld ends 6" MODEL C, 5 corrugations with weld ends	32 32	2 bellows used between anchors with intermediate anchor between bellows, because of branch line.
4a 4b	150 70	3.78	6" MODEL C, 6 corrugations with weld ends 4" MODEL C, 5 corrugations with weld ends	35-1/4 20-1/8	2 bellows used between main anchors with addi- tional main anchor at pipe reducer, because load would be differential pressure thrust.
5	75	1.89	4" MODEL C, 5 corrugations with weld ends	20-1/8	Pipe anchored at inter- section of 3 in branch, unit placed near anchor.
6	140	3.53	4' MODEL C, 10 corrugations with weld ends	28-1/4	Bellows installed near anchor.
7	60	1.51	3" MODEL C, 4 corrugations with weld ends	18-1/2	Bellows installed near anchor.
8a 8b	30 50	.76 1.26			This section is flexible. No bellows required.

Step 2 - From the following chart for recommended guide spacings, establish guide spacing for each pipe diameter.

Pipe Diameter	1st Guide (4 D.)	2nd Guide (14 D.)	Intermediate Guides (Chart)
3 in.	1 ft.	3 ft. 6 in.	23 ft.
4 in.	1 ft. 4 in.	4 ft. 9 in.	32 ft.
6 in.	2 ft.	7 ft.	42 ft.

Step 3 - Establish the loads acting on anchor points.

1. Pipe Diameter - in.	3	4	6
2. Test Pressure - psig (P)	210	210	210
3. Axial Spring Rate - Ibs./in./corr.	2600	2800	3500
4. Bellows Effective Area - in.2 (A)*	21	29	62
5. Pipe Weight - Ib./ft. (W)	7.57	10.79	18.97
6. Media Weight - Ib./ft. (M)	0.02	0.04	0.07
7. Insulation Weight - Ib./ft. (I)	2	3	5
8. Coefficient of Friction (µ)	0.3	0.3	0.3

*For this information, refer to the appropriate data sheet.

From the above information, the anchor loads due to the bellows in each pipe section can be calculated as follows:

Pipe Section	1	2	3a	3 b	4a	4 b	5	6	7
Pressure Thrust - Ib. (PxA)	13,020	13,020	13,020	13,020	13,020	6,090	6,090	6,090	4,410
Deflection Load - Ib. (S/R x MOVEMENT)	2,205	2,205	2,205	2,205	2,205	991	1,058	988	981
Friction Load -lb. µ(Total W+M+I)(Leg Length (ft.))	540	1,080	900	900	1,080	290	311	580	172
Total Thrust - Ib.	15,765	16,305	16,125	16,125	16,305	7,371	7,392	7,658	5,573

The above information can now be entered onto the pipe system layout, and resultant loads on each anchor can be calculated.

Pipe Flexibility

Natural pipe flexibility should be examined prior to the use of other expansion devices. The following charts on "L" bends, "Z" bends, and loops can be used to determine the flexibility of the piping system.

Pipe	pe Expansion of Longest Leg								
Size	1″	1½″	2″	21/2"	3″	31/2″	4″	41/2"	5″
2″	8′	11′	13′	.15′	16′	17'	18′	19′	20′
21⁄₂″	9'	12′	14'	16'	17'	18′	19′	21′	22′
3"	10′	13′	15′	17'	18'	19′	20'	22'	23′
4''	11'	14′	16′	18′	19'	22'	22'	24'	25'
5″	12′	15′	17′	19′	21'	23'	25′	27′	28′
6"	13′	16′	19′	21'	23′	25'	27'	29′	31′
8″	18′	20'	22'	25'	27'	29'	31′	33'	35′
10″	20′	23′	26′	28′	30′	33′	35′	38′	40'
12″	22'	26′	29′	32′	34′	37'	40'	43′	45′
14″	22′	26′	29′	32′	34′	37′	40'	43′	47'
16″	22'	26′	29′	32'	35′	39′	41′	45'	50′
18″	22'	26′	29′	32'	36′	40′	42'	47'	52′
20″	22'	26′	29′	32′	37'	41′	44'	49'	53'
24″	22'	26′	29′	32′	38′	41′	44'	50'	54'

"Z" Bends

1. Calculate total expansion anchor to anchor.

2. Find minimum feet required for this amount of expansion from chart. This represents the minimum footage for offset and minimum footage of expansion type pipe supports required for EACH side of "Z" bend.

"Z" Bends (Continued)

Pipe		Anchor to Anchor Expansion												
Size	1″	11/2"	2″	2 ½″	3″	31/2″	4″	4 ½″	5″					
2″	6′	7'	9′	10′	11′	12′	12'	13′	14′					
21/2″	6′	8′	9′	10'	11'	12′	13′	14'	15′					
3"	7'	9′	10′	12′	13′	14'	15′	16′	17′					
4"	8′	10'	11′	13'	14'	16′	17'	18′	19′					
5″	8′	10′	12′	14'	16′	17′	19′	20'	21′					
6"	9′	11'	13'	15'	17'	19′	20'	22'	23′					
8″	9′	12′	14'	17′	19'	20′	22′	24'	25′					
10"	10′	13′	16′	18′	20′	23'	25'	27'	28′					
12"	11′	14'	17′	20'	22'	24'	26′	28′	30′					
14″	11'	14'	17′	20'	22'	25'	27'	29′	32′					
16″	11'	14′	17′	20'	22'	25'	27'	30′	33′					
18″	11′	14'	17'	20'	25′	26'	28′	31′	34'					
20"	12′	15′	18′	20'	25'	27'	29′	32'	35′					
24″	13′	15′	18′	21′	26'	28′	30′	33′	36′					

Loops

Pi	Pipe				Anchor	to Anc	hor Exp	ansion)		
Siz	ze	1″	2″	3″	4"	5″	6″	7″	8″	9"	10″
2"	WH	2′0″ 4′0″	2'6" 5'0"	3′6″ 7′0″	4′0″ 8′0″	4′6″ 9′0″	5′0″ 10′0″	5′6″ 11′0″	6′0″ 12′0″	6'6" 13'0"	7′0″ 14′0″
21⁄2″	W	2'0"	3′0″	3′6″	4′0″	4′6″	5′0″	5′6″	6′0″	6′6″	7′0″
	H	4'0"	6′0″	7′0″	8′0″	9′0″	10′0″	11′0″	12′0″	13′6″	14′0″
3″	н	2′0″ 4′0″	3′0″ 6′0″	4′0″ 8′0″	4'6" 9'0"	5'6" 11'0"	6′0″ 12′0″	6′6″ 13′0″	7′0″ 14′0″	7'6" 15'0"	8′0″ 16′0″
4"	H	2'6"	3′6″	4'6"	5′6″	6′0″	7′0″	7′6″	8′0″	9′0″	9′6″
	N	5'0"	7′0″	9'0"	11′0″	12′0″	14′0″	15′0″	16′0″	18′0″	19′0″
5″	-W	2'6"	4′0″	5′0″	6′0″	7′0″	8′0″	8'6"	9'6"	10'0"	11'0″
	H	5'0"	8′0″	10′0″	12′0″	14′0″	16′0″	17'0"	19'0"	20'0"	22'0″
6"	W	2'6"	4′6″	5′6″	6′6″	7′6″	8′6″	9'6"	10'6"	11′0″	12'0"
	H	5'0"	9′0″	11′0″	13′0″	15′0″	17′0″	19'0"	21'0"	22′0″	24'0"
8″	WH	3′0″ 6′0″	4′6″ 9′0″	6′0″ 12′0″	7′6″ 15′0″	8′6″ 17′0″	8'6" 19'0"	10′6″ 21′0″	11′6″ 23′0″	12'6" 25'0"	13'6" 27'0"
10″	W	3′0″	4′6″	6′6″	8'0"	9′6″	10'6"	11′6″	12'6"	13'6"	14'6"
	H	6′0″	9′0″	13′0″	16'0"	19′0″	21'0"	23′0″	25'0"	27'0"	29'0"
12″	W	3′0″	5′0″	6′6″	8′6″	10'0"	11′0″	12'6"	13'6″	14'6"	15′0″
	H	6′0″	10′0″	13′0″	17′0″	20'0"	22′0″	25'0"	27'0″	29'0"	31′0″

Thermal Expansion of Pipe in Inches per 100 Feet

Saturated Steam ¹	Temperature (°F.)	Cast Iron	Carbon and Carbon Molybdenum	Wrought Iron	4-6% Cr. Alloy Steel	12% Cr. Stainless Steel	18 Cr8 Ni. Stainless Steel	Copper	Monel
	-200 -180 -160 -140 -120	-1.058 -0.982 -0.891 -0.797 -0.697	-1.282 -1.176 -1.066 -0.948 -0.826	-1.289 -1.183 -1.073 -0.955 -0.833	-1.250 -1.130 -1.030 -0.970 -0.800	-1.170 -1.070 -0.970 -0.870 -0.750	-2.030 -1.850 -1.670 -1.480 -1.300	-1.955 -1.782 -1.612 -1.428 -1.235	-1.53 -1.40 -1.27 -1.12 -0.98
	-100 -80 -60 -40 -20	-0.593 -0.481 -0.368 -0.248 -0.127	-0.698 -0.563 -0.428 -0.288 -0.145	-0.705 -0.570 -0.435 -0.295 -0.152	-0.700 -0.550 -0.430 -0.290 -0.145	-0.630 -0.520 -0.400 -0.270 -0.130	-1.090 -0.880 -0.670 -0.450 -0.225	-1.040 -0.835 -0.630 -0.421 -0.210	-0.82 -0.68 -0.51 -0.35 -0.18
29.39	0 20 32 40 60	0 0.128 0.209 0.270 0.410	0 0.148 0.230 0.300 0.448	0 0.180 0.280 0.350 0.540	0 0.140 0.234 0.280 0.430	0 0.140 0.234 0.280 0.430	0 0.223 0.356 0.446 0.669	0 0.238 0.366 0.451 0.684	0 0.2 0.3 0.37 0.55
28.89 27.99 26.48 24.04 20.27	80 100 120 140 160	0.550 0.680 0.830 0.970	0.580 0.753 0.910 1.064 1.200	0.710 0.887 1.058 1.240 1.420	0.500 0.650 0.800 0.950 1.100	0.550 0.690 0.820 0.960 1.090	0.892 1.115 1.338 1.545 1.784	0.896 1.134 1.366 1.590 1.804	0.74 0.92 1.11 1.30 1.50
14.63 6.45 0 2.5	180 200 212 220 240	1.240 1.390 1.480 1.530	1.360 1.520 1.610 1.680	1.580 1.750 1.870 1.940 2.120	1.250 1.400 1.500 1.550 1.720	1.230 1.380 1.460 1.510	2.000 2.230 2.361 2.460 2.690	2.051 2.296 2.428 2.516 2.756	1.70 1.88 2.00 2.07
20.7 34.5 52.3 74.9	240 260 280 300 320	1.870 1.820 1.970 2.130 2.268 2.268	2.020 2.180 2.350 2.530	2.300 2.470 2.670 2.850 2.850	1.880 2.050 2.200 2.370	1.790 1.930 2.080 2.220	2.000 2.920 3.150 3.390 3.615 2.010	2.985 3.218 3.461 3.696	2.27 2.47 2.66 2.87 3.07
138.3 180.9 232.4 293.7	360 380 400 420	2.430 2.590 2.750 2.910 3.090	2.700 2.880 3.060 3.230 3.421 2.505	3.230 3.425 3.620 3.820	2.530 2.700 2.860 3.010 3.180 2.50	2.380 2.510 2.670 2.820 2.980 2.980	4.100 4.346 4.580 4.800	4.176 4.424 4.666 4.914	3.27 3.48 3.70 3.91 4.12
451.3 550.3 664.3 795.3	440 460 480 500 520	3.410 3.570 3.730 3.900	3.595 3.784 3.955 4.151 4.342	4.020 4.200 4.400 4.600 4.810 5.000	3.530 3.530 3.700 3.860 4.040	3.130 3.290 3.450 3.600 3.760	5.050 5.300 5.540 5.800 6.050	5.408 5.651 5.906 6.148	4.34 4.56 4.78 4.99 5.23
945.3 1115 1308 1525 1768	560 580 600 620	4.080 4.250 4.430 4.600 4.790	4.525 4.730 4.930 5.130 5.330	5.020 5.220 5.430 5.620 5.840	4.200 4.400 4.560 4.750 4.920	4.090 4.250 4.420 4.580	6.520 6.780 7.020 7.270	6.646 6.919 7.184 7.432	5.69 5.91 6.12 6.38
2346 2705 3080	660 680 700 720	4.970 5.150 5.330 5.520 5.710	5.330 5.750 5.950 6.160 6.360 6.570	6.250 6.470 6.670 6.880 7.100	5.100 5.300 5.480 5.650 5.850 6.020	4.750 4.910 5.080 5.250 5.430	7.520 7.770 8.020 8.280 8.520 8.520	7.949 7.949 8.196 8.472 8.708	6.85 7.07 7.30 7.65
	760 780 800 820	6.090 6.280 6.470 6.660	6.790 7.000 7.230 7.450	7.320 7.530 7.730 7.960	6.220 6.410 6.610 6.800	5.000 5.950 6.120 6.300	9.050 9.300 9.580 9.820	9.256 9.532 9.788 10.068	8.02 8.27 8.51 8.76
	840 860 880 900 920	6.850 7.049 7.248 7.460 7.668	7.660 7.970 8.100 8.340 8.540	8.180 8.400 8.630 8.870 9.070	7.000 7.190 7.380 7.580 7.770	6.480 6.660 6.840 7.010 7.200	10.100 10.370 10.630 10.900 11.180	10.308 10.610 10.971 11.156 11.421	9.02 9.27 9.52 9.78 10.01
	940 960 980 1000 1020	7.862 8.073 8.300 8.510	8.770 8.990 9.220 9.420 9.65	9.300 9.520 9.740 9.970	7.970 8.170 8.360 8.550 8.75	7.380 7.560 7.840 7.920 8.10	11.460 11.730 12.000 12.260 12.55	11.707 11.970 12.269 12.543	10.31 10.57 10.83 11.08 11.36
	1040 1060 1080 1100 1120		9.87 10.08 10.32 10.57 10.75		8.95 9.15 9.35 9.54 9.75	8.27 8.46 8.64 8.83 9.00	12.82 13.10 13.37 13.62 13.91		11.63 11.90 12.18 12.43 12.72
	1140 1160 1180 1200 1220		10.98 11.21 11.43 11.63 11.87		9.95 10.15 10.36 10.49 10.75	9.18 9.36 9.55 9.72 9.90	14.17 14.45 14.72 14.98 15.26		12.98 13.26 13.55 13.81 14.10
	1240 1260 1280 1300 1320		12.10 12.33 12.55 12.75 12.98		10.95 11.15 11.35 11.55 11.75	10.08 10.27 10.45 10.63 10.80	15.53 15.81 16.08 16.34 16.62		14.39 14.68 14.96 15.24 15.53
	1340 1360 1380 1400 1420		13.21 13.42 13.65 13.87		11.95 12.15 12.35 12.54	10.98 11.17 11.35 11.53	16.90 17.17 17.43 17.70 17.98		15.82 16.10 16.40 16.68
	1440 1460 1480 1500						18.25 18.52 18.80 19.07		

¹Vacuum in HG Below 212°F., Pressure in psig Above 212°F. NOTE: Bold-face entries in each column indicate the maximum recommended temperature for each metal.

A Guide to Bellows Material Selection

Material	Manufacturing Feasibility & Availability
Gr. 304	Standard material for convolution manufacture. Bellows supplied in this grade are usually used on water or steam applications. For temperatures to 850°F.
Gr. 304L	Bellows can be supplied in this material when required, subject to availability of sheet of the required gauge. For Nitric Acid service, the use of 321 supplied to special compositional limits is an alternative frequently employed.
Gr. 316	Improved corrosion resistance as compared to 321, especially with regard to pitting corrosion. Specified where 321 is inadequate but where conditions are not sufficiently severe to require the use of more expensive materials, such as high Nickel alloys. Typical uses include high sulphur crude oils, brackish waters, flue gases, food processing and numerous applications in chemical and petrochemical processing.
Gr. 321	Adequate corrosion resistance and mechanical properties at ambient and elevated temperatures, 800°F to 1500°F.
Gr. 347	This grade is occasionally specified, and bellows can be manufactured sub- ject to the availability of suitable material. In most applications, 321 is equal in service to 347, and it is our normal practice to offer this grade when 347 is requested.
Gr. 310	This grade is sometimes requested for special purposes. Because of diffi- culty in obtaining material suitable for bellows manufacture, it is our practice to offer Incoloy 800 as a superior alternative material where necessary.
Incoloy 800	Bellows can be supplied in this material when its good corrosion resistance and high temperature properties are required to meet service conditions. In- coloy 800 is preferred to Type 310 Stainless Steel for bellows manufacture.
Incoloy 825	A very useful high Nickel alloy having good corrosion resistance towards a variety of media, and excellent resistance to Chloride and Caustic stress corrosion. Applications include steam service when the highest degree of reliability is required, and cases where Type 316 stainless steel may be inadequate; for example, dewpoint condiitons in flue gas service, static or contaminated sea water, and Sulphuric and Phosphoric acids.
Inconel 600	Bellows can be manufactured from this material when required. The alloy combines good general corrosion resistance with virtual immunity to Chlo- ride stress corrosion and also has good high temperature strength and oxida- tion resistance. For high temperature service where corrosion resistance is not a requirement, Nimonic 75 is often preferable because of its superior me- chanical properties.
Inconel 625	One of the more recent Nickel-Chrome Molybdenum alloys combining good high temperature properties with good resistance to Chloride stress corro- sion and a variety of corrosive environments.
Monel 400	This Nickel-Copper alloy finds limited use for bellows manufacture in some specialized applications such as Chlorine service. However, the manufacture of small diameter bellows would be uneconomic, and we advise that an alternative material should be used where the service conditions permit.
Nimonic 75	This high Nickel alloy is a standard material for the manufacture of bellows for high temperature service. It is virtually immune to Chloride stress corro- sion and was extensively used where resistance to this form of failure was required before Incoloy 825 became available.
Nimonic 80A Nimonic C263	Bellows have been manufactured in these materials since 1960, and can be supplied where the service conditions warrant their use. Bellows can also be supplied in other Nimonic alloys which are available in sheet form.
Hastelloy B	This Nickel-Molybdenum alloy possesses outstanding resistance to Hydro- chloric Acid, and is also resistant to Hydrogen Chloride gas, as well as Sul- phuric and Phosphoric acids. Bellows can be supplied when required, sub- ject to the availability of sheet material.
Hastelloy C 276	A Nickel-Chrome Molybdenum alloy having outstanding resistance to a wide variety of severely corrosive chemical process environments including: wet Chlorine, Hypochlorites, Chlorine Dioxide solutions, hot contaminated min- eral acids and Acetic acid, sea water and brine. Bellows can be supplied when required, subject to the same limitations as for Hastelloy B.

Metraflex Quality Products

EXPANSION JOINT INSTALLATION INSTRUCTIONS

- The bellows element shall be protected from damage. Dents, scores, arc strikes, weld spatter, and other damage can cause the joint to fail. Damaged joints should not be used.
- Align joint flange and pipe flange holes. Do not try to compensate for flange or pipe misalignment by putting any torsional, compressive, extension, or offset loads on the expansion joint. Good practice suggests that a mating flange in the piping system remain unwelded until the expansion joint has been bolted in position.
- 3. All anchors, guides, and supports must be installed according to engineering drawings and specifications.
- 4. Internally pressurized expansion joints are to be installed in the proper orientation with respect to direction of flow.

- 5. Unit lengths must not be altered during installation except for the application of cold pull.
- 6. Remove shipping restraints after installation, but before hydrotesting.
- 7. Test pressure should not exceed 1 1/2 times design pressure.
- 8. Water free of halogens should be used for hydrotesting.
- 9. If testing medium is significantly heavier than the product to be carried in the system, care must be taken to support the additional weight.
- 10. Paints containing low melting point metals or their compounds, particularly aluminum, lead or zinc, must not be allowed to come into contact with the bellows convolutions.
- 11. All installation procedures should conform to E.J.M.A. Safety Recommendation in Section B.

Terms and Conditions

1. All quotations are subject to approval, acceptance and correction at the home office. Any errors in quotations resulting in orders will be corrected and resubmitted to the customer for their acceptance or refusal.

No prices may be made up from information other than that shown in the tables.

2. All prices are F.O.B. factory, Chicago, Illinois, are are quoted exclusive of any taxes.

Shipments boxed for trans-ocean export, add 10% to total trade price.

Terms: Net 30 days from date of invoice.

3. Cancellation or alteration of an order or return of any product by Buyer may not be made without advance written consent of manufacturer and shall be subjected to a cancellation charge. Custom joints are not returnable.

A 35% minimum restocking charge shall be placed on any returned goods.

4. We will not be responsible for delays in shipping due to conditions beyond our control such as strikes, fires, or accidents.

5. Any claims for shortages or damaged products must be made in writing within 10 days after receipt of shipment.

6. Prices subject to change without notice.

Design and Dimensional Specifications

The products illustrated reflect the design characteristics at time of printing.

Metraflex reserves the right to change dimensions, materials, or methods of construction without notice. Please contact the factory for certified prints (exact dimensions) when necessary.

Limited Warranty

All products are warranted to be free of defects in material and workmanship for a period of one year from the date of shipment, subject to the limitations below.

If the purchaser believes a product is defective the purchaser shall: (a) Notify the manufacturer, state the alleged defect and request permission to return the product. (b) If permission is given, return the product with transportation prepaid. If the product is accepted for return and found to be defective, the manufacturer will, at its discretion, either repair or replace the product F.O.B. factory, within 60 days of receipt, or refund the purchase price. Other than to repair, replace or refund as described above, purchaser agrees that manufacturer turer shall not be liable for any loss, costs, expenses or

damages of any kind arising out of the product, its use, installation or replacement, labeling, instructions, information or technical data of any kind, description of product or use, samples or model, warnings or lack of any of the foregoing. NO OTHER WARRANTIES, WRITTEN OR ORAL, EXPRESS OR IMPLIED, IN-CLUDING THE WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE AND MERCHANTABILITY, ARE MADE OR AUTHORIZED. NO AFFIRMATION OF FACT, PROMISE, DESCRIPTION OF PRODUCT OR USE OR SAMPLE OR MODEL SHALL CREATE ANY WARRANTY FROM MANUFACTURER, UNLESS SIGNED BY THE PRESIDENT OF MANUFACTURER. These products are not manufactured, sold or intended for personal, family or household purposes.

• HIGH PERFORMANCE

CAST IRON STRAINERS

Metrofics

• METRASEAL

Call or write for information on any of these other METRAFLEX PRODUCTS

2323 W. HUBBARD ST. • CHICAGO, IL 60612 • 312-738-3800 • FAX 312-738-0415 • http://www.metraflex.com

Metra lex

RUBBER JOINTS

Distributed by: